No. 1
A Survey on Medical Image Compression: From Traditional to Learning-Based Approaches
TLDR本文是一篇关于医学图像压缩的综述,系统梳理了该领域的技术演进,重点分析了传统方法与基于深度学习的方法在应对2D、3D/4D不同模态医学图像压缩时的挑战与特点,并展望了未来方向。
阅读摘要与笔记 点击展开
Abstract
The exponential growth of medical imaging has created significant challenges in data storage, transmission, and management for healthcare systems. In this vein, efficient compression becomes increasingly important. Unlike natural image compression, medical image compression prioritizes preserving diagnostic details and structural integrity, imposing stricter quality requirements and demanding fast, memory-efficient algorithms that balance computational complexity with clinically acceptable reconstruction quality. Meanwhile, the medical imaging family includes a plethora of modalities, each possessing different requirements. For example, 2D medical image (e.g., X-rays, histopathological images) compression focuses on exploiting intra-slice spatial redundancy, while volumetric medical image faces require handling intra-slice and inter-slice spatial correlations, and 4D dynamic imaging (e.g., time-series CT/MRI, 4D ultrasound) additionally demands processing temporal correlations between consecutive time frames. Traditional compression methods, grounded in mathematical transforms and information theory principles, provide solid theoretical foundations, predictable performance, and high standardization levels, with extensive validation in clinical environments. In contrast, deep learning-based approaches demonstrate remarkable adaptive learning capabilities and can capture complex statistical characteristics and semantic information within medical images. This comprehensive survey establishes a two-facet taxonomy based on data structure (2D vs 3D/4D) and technical approaches (traditional vs learning-based), thereby systematically presenting the complete technological evolution, analyzing the unique technical challenges, and prospecting future directions in medical image compression.
摘要翻译
医学影像的指数级增长给医疗系统的数据存储、传输和管理带来了巨大挑战。在此背景下,高效压缩技术的重要性日益凸显。与自然图像压缩不同,医学图像压缩优先考虑保留诊断细节和结构完整性,对质量要求更为严格,并需要快速、内存高效的算法,以在计算复杂度和临床可接受的重建质量之间取得平衡。同时,医学影像家族包含多种模态,每种模态都有不同的要求。例如,二维医学图像(如X射线、组织病理学图像)压缩侧重于利用切片内的空间冗余,而三维医学图像压缩则需要处理切片内和切片间的空间相关性,四维动态成像(如时间序列CT/MRI、4D超声)还额外要求处理连续时间帧之间的时间相关性。传统压缩方法基于数学变换和信息论原理,提供了坚实的理论基础、可预测的性能和高度的标准化水平,并在临床环境中得到了广泛验证。相比之下,基于深度学习的方法展现出卓越的自适应学习能力,能够捕捉医学图像中复杂的统计特征和语义信息。本综述基于数据结构(二维与三维/四维)和技术方法(传统与基于学习)建立了双维度分类法,从而系统性地呈现了医学图像压缩的完整技术演进,分析了独特的技术挑战,并展望了未来发展方向。
Motivation
医学影像数据的指数级增长给医疗系统的存储、传输和管理带来了巨大挑战。医学图像压缩需在保证诊断细节和结构完整性的前提下,平衡计算复杂度与重建质量,且不同成像模态(如2D、3D、4D)有各自独特的技术要求,亟需系统性的技术梳理与总结。
Method
本文采用综述研究方法,建立了一个基于两个维度的分类体系:一是数据结构(2D图像 vs 3D/4D体数据/动态图像),二是技术路线(传统方法 vs 基于深度学习的方法),以此系统性地呈现技术演进、分析技术挑战。
Result
通过建立的分类框架,系统阐述了各类压缩技术的原理与特点:传统方法(基于数学变换和信息论)理论基础扎实、性能可预测、标准化程度高;深度学习方法则展现出强大的自适应学习能力,能捕捉图像中复杂的统计特征和语义信息。同时,清晰指出了不同模态(2D、3D、4D)压缩所面临的核心技术挑战(如空间冗余、时空相关性处理)。
Conclusion
医学图像压缩是一个要求严苛且多样化的领域,需要根据具体模态和临床需求选择或设计算法。传统方法与深度学习方法各有优势。未来研究需进一步探索如何更好地结合两者优势,开发出高效、高质量且适用于临床环境的压缩技术。